Article ID Journal Published Year Pages File Type
4974986 Journal of the Franklin Institute 2014 18 Pages PDF
Abstract
This paper investigates the problem of global stabilization of switched nonlinear systems in non-triangular form whose subsystems are not assumed to be asymptotically stabilizable. The use of multiple Lyapunov functions (MLFs) method permits removal of a common restriction in which the nonlinear structures in the non-switched nonlinear systems are restricted to a triangular structure when applying backstepping. Using the MLFs method and the adding a power integrator technique, we design state-feedback controllers for individual subsystems and construct a switching law to guarantee asymptotic stability of the closed-loop switched system. As an application of the proposed design method, the global stabilization problem of a continuously stirred tank reactor (CSTR) system and two inverted pendulums which cannot be handled by the existing methods is investigated.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,