Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4975035 | Journal of the Franklin Institute | 2016 | 18 Pages |
Abstract
The global asymptotic stability problem for a class of nonlinear dynamical systems with leakage delay is studied in this paper. By constructing the Lyapunov-Krasovskii functional involving triple integral terms, then employing convex combination technique, model transformation and the free-weighting matrix approach, the delay-dependent stability criteria depending on the upper bound of the leak delay and its derivative are proposed and derived, the effect of leakage delay on stability is analyzed by comparing with the existed literatures. All results are expressed in terms of Linear Matrix Inequalities (LMIs), which can be solved by standard numerical software. Three examples and their simulations are provided to illustrate the low conservatism and effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Yajun Li, Zhigang Zeng, Shiping Wen,