Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4975215 | Journal of the Franklin Institute | 2014 | 17 Pages |
Abstract
Raising the level of biological realism by utilizing the timing of individual spikes, spiking neural networks (SNNs) are considered to be the third generation of artificial neural networks. In this work, a novel variable-structure-systems based approach for online learning of SNN is developed and tested on the identification and speed control of a real-time servo system. In this approach, neurocontroller parameters are used to define a time-varying sliding surface to lead the control error signal to zero. To prove the convergence property of the developed algorithm, the Lyapunov stability method is utilized. The results of the real-time experiments on the laboratory servo system for a number of different load conditions including nonlinear and time-varying ones indicate that the control structure exhibits a highly robust behavior against disturbances and sudden changes in the command signal.
Related Topics
Physical Sciences and Engineering
Computer Science
Signal Processing
Authors
Y. Oniz, O. Kaynak,