Article ID Journal Published Year Pages File Type
4975511 Journal of the Franklin Institute 2011 17 Pages PDF
Abstract
This paper investigates the control problem for nonlinear networked control systems with global Lipschitz nonlinearities subject to output quantization and data packet dropout. The system states are unavailable and the outputs are quantized in a logarithmic form before transmitted through network. In the communication channel, two types of packet losses are considered simultaneously: (i) packet losses from sensor to controller and (ii) packet losses from controller to actuator, which are modeled as two independent Bernoulli distributed white sequences, respectively. Based on the proposed model, an observer-based controller is designed to exponentially stabilize the networked system in the sense of mean square, and sufficient conditions for the existence of the controller are established. Finally, a numerical example is presented to illustrate the effectiveness and applicability of the proposed technique.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,