Article ID Journal Published Year Pages File Type
4975547 Journal of the Franklin Institute 2013 24 Pages PDF
Abstract
The present paper proposes two new schemes of sensor fault estimation for a class of nonlinear systems and investigates their performances by applying these to satellite control systems. Both of the schemes essentially transform the original system into two subsystems (subsystems 1 and 2), where subsystem-1 includes the effects of system uncertainties, but is free from sensor faults and subsystem-2 has sensor faults but without any uncertainties. Sensor faults in subsystem-2 are treated as actuator faults by using integral observer based approach. The effects of system uncertainties in subsystem-1 can be completely eliminated by a sliding mode observer (SMO). In the first scheme, the sensor faults present in subsystem-2 are estimated with arbitrary accuracy using a SMO. In the second scheme, the sensor faults are estimated by designing an adaptive observer (AO). The sufficient condition of stability of the proposed schemes has been derived and expressed as a linear matrix inequality (LMI) optimization problem and the design parameters of the observers are determined by using LMI techniques. The effectiveness of the schemes in estimating sensor faults is illustrated by considering an example of a satellite control system. The results of the simulation demonstrate that the proposed schemes can successfully estimate sensor faults even in the presence of system uncertainties.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,