Article ID Journal Published Year Pages File Type
4975602 Journal of the Franklin Institute 2013 20 Pages PDF
Abstract
In this paper, we present a chaotic interleaving scheme for both the Continuous Phase Modulation (CPM) based Orthogonal Frequency Division Multiplexing (CPM-OFDM) and CPM-based Single-Carrier Frequency-Domain Equalization (CPM-SC-FDE) systems. Chaotic interleaving is used to generate permuted versions from the sample sequences to be transmitted with low correlation among their samples, and hence a better Bit Error Rate (BER) performance can be achieved. The proposed CPM-OFDM and CPM-SC-FDE systems with chaotic interleaving combine the advantages of the frequency diversity and the high power efficiency of the CPM-based systems and the performance improvements due to chaotic interleaving. The BER performance of the both systems with and without chaotic interleaving is evaluated by computer simulations. Also, a comparison between chaotic interleaving and block interleaving is performed. Simulation results show that, the proposed chaotic interleaving scheme can greatly improve the performance of the CPM-OFDM system and the CPM-SC-FDE system. Furthermore, the results show that the chaotic interleaving scheme outperforms the traditional block interleaving scheme in both systems. The results also show that the use of chaotic interleaving with CPM-OFDM and CPM-SC-FDE systems provides a good trade-off between system performance and bandwidth efficiency.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , , ,