Article ID Journal Published Year Pages File Type
4975852 Journal of the Franklin Institute 2012 28 Pages PDF
Abstract
Integrated guidance and control (IGC) approaches exploit the synergy between guidance and control designs. This study focuses on the integrated guidance and control (autopilot) design for a chasing Uninhabited Aerial Vehicle (UAV) against a target aircraft. A second-order sliding structure with a second-order sliding mode (SOSM) including a high-order sliding mode (HOSM) observer for the estimation of the uncertain sliding surfaces is selected to develop an integrated guidance and autopilot scheme. In order to make the design synthesis easier, intermediate control variables for partial derivatives of a sliding surface are carefully selected. The resulting sliding surface structure is simple and sufficient to relate the actuator input to the sliding surface. The potential of the proposed method is demonstrated through an aircraft application by comparing its simulation performance, number of tuning parameters used, and information needed for its implementation with an approach where the guidance law and the controller are designed separately.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , ,