Article ID Journal Published Year Pages File Type
4975882 Journal of the Franklin Institute 2011 11 Pages PDF
Abstract
In this paper, we investigate the problem of global exponential stability analysis for a class of delayed recurrent neural networks. This class includes Hopfield neural networks and cellular neural networks with interval time-delays. Improved exponential stability condition is derived by employing new Lyapunov-Krasovskii functional and the integral inequality. The developed stability criteria are delay dependent and characterized by linear matrix inequalities (LMIs). The developed results are less conservative than previous published ones in the literature, which are illustrated by representative numerical examples.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,