Article ID Journal Published Year Pages File Type
4976515 Journal of the Franklin Institute 2008 28 Pages PDF
Abstract
Model-based fault detection and isolation (FDI) requires an analytical system model from which fault indicators can be derived by assigning proper computational causalities. Many bond graph (BG) model-based techniques for FDI have been developed in recent past. Furthermore, many other advances have been made in the field of control engineering applications of BG modelling. Supervision systems not only perform FDI, but also take the necessary steps for fault accommodation. Fault accommodation is done either through system reconfiguration or through fault tolerant control (FTC). In this paper, it is shown that bicausal BG modelling proves to be a unified approach for sensor placement from the FDI and FTC viewpoint, identification of hardware redundancies for system reconfiguration, generation of fault indicators, estimation of fault parameters for fault accommodation, inversion of systems and actuator sizing for FTC, etc. It is shown that the use of bicausalled BG helps to integrate many of the recently developed advances made in the field of control engineering into development of complex supervision systems.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, ,