Article ID Journal Published Year Pages File Type
4976810 Mechanical Systems and Signal Processing 2017 21 Pages PDF
Abstract
The focus of this work is the accurate prediction of dynamic mechanical performances of a multi-ribbed belt span. An overlay constitutive model, which consists of hyperelastic, viscoelastic and elastoplastic parts coupled in parallel, is established to describe mechanical properties of carbon-black-filled rubber material used in the belt. A uniaxial tensile test and a uniaxial compressional test are conducted to obtain the hyperelastic material parameters of the constitutive model, and a simple dynamic shear test is used to identify the viscoplastic material parameters via a standard genetic algorithm. Finite element (FE) simulations with the constitutive model are performed to simulate static and hysteretic dynamic characteristics of rubber specimens in these tests. By comparing the simulation results with experiments, the accuracy of the constitutive model and its material parameters is validated. A three-dimensional FE model based on the constitutive model is established to predict both longitudinal and transverse dynamic performances of the multi-ribbed belt span and its good agreements with experimental results are achieved.
Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , ,