Article ID Journal Published Year Pages File Type
4977380 Signal Processing 2018 11 Pages PDF
Abstract

•A novel tracking method for applications with controllable sensors.•A computationally efficient control method for numerous sensors in real-time.•Numerical implementation of the entire tracking and sensor control algorithm.

Sensor management in multi-object stochastic systems is a theoretically and computationally challenging problem. This paper presents a new approach to the multi-target multi-sensor control problem within the partially observed Markov decision process (POMDP) framework. We model the multi-object state as a labeled multi-Bernoulli random finite set (RFS), and use the labeled multi-Bernoulli filter in conjunction with minimizing a task-driven control objective function: posterior expected error of cardinality and state (PEECS). A major contribution is a guided search for multi-dimensional optimization in the multi-sensor control command space, using coordinate descent method. In conjunction with the Generalized Covariance Intersection method for multi-sensor fusion, a fast multi-sensor control algorithm is achieved. Numerical studies are presented in several scenarios where numerous controllable (mobile) sensors track multiple moving targets with different levels of observability. The results show that our method works significantly faster than the approach taken by the state of the art methods, with similar tracking errors.

Related Topics
Physical Sciences and Engineering Computer Science Signal Processing
Authors
, , , , , ,