Article ID Journal Published Year Pages File Type
497859 Computer Methods in Applied Mechanics and Engineering 2015 20 Pages PDF
Abstract

A fast Fourier transform (FFT) based computational approach integrating phase-field method (PFM) and crystal plasticity (CP) is proposed to model recrystallization of plastically deformed polycrystals in three dimensions (3-D). CP at the grain level is employed as the constitutive description to predict the inhomogeneous distribution of strain and stress fields after plastic deformation of a polycrystalline aggregate while the kinetics of recrystallization is obtained employing a PFM in the plastically deformed grain structure. The elasto-viscoplastic equilibrium is guaranteed during each step of temporal phase-field evolution. Static recrystallization involving plasticity during grain growth is employed as an example to demonstrate the proposed computational framework. The simulated recrystallization kinetics is compared using the classical Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory. This study also gives us a new computational pathway to explore the plasticity-driven evolution of 3D microstructures.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , , , , , ,