Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
498189 | Computer Methods in Applied Mechanics and Engineering | 2013 | 12 Pages |
Abstract
We study a trapezoidal-in-time, finite-element-in-space discretization of a new Leray regularization model that locally chooses the filtering radius using a deconvolution based indicator function to identify regions where regularization is needed. Because this indicator function is mathematically based, it allows us to establish a rigorous analysis of the resulting numerical algorithm. We prove well-posedness, unconditional stability, and convergence of the proposed algorithm, and test the model on several benchmark problems.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Abigail L. Bowers, Leo G. Rebholz,