Article ID Journal Published Year Pages File Type
4985423 Journal of Colloid and Interface Science 2017 9 Pages PDF
Abstract

HypothesisDifferent ions constituting ionic liquids (ILs) change their properties, including the Critical Micelization Concentration (CMC). It is possible to identify and quantitatively describe specific structural ions' features having influence on the micelization of ILs. Moreover, it should be possible to verify, whether the phenomenon of micelization is governed by the influence of the single ion only, rather than being a sum of both ions' mutual influence.ExperimentalThe qualitative and quantitative description of the structural properties responsible for micelles formation was performed with the use of the Quantitative Structure-Property Relationship (QSPR) approach. Structural features were expressed with help of the molecular GEometry, Topology, and Atom-Weights AssemblY (GETAWAY) descriptors system. The QSPR model was properly validated and its quality and usability was additionally proven by applying it to predict the CMC for 15,000 computationally designed ILs. It was the first model to the CMC assessment for ILs.FindingsThe analysis showed that longer (containing big hydrophobic domain), less spherical and not “folded” cations as well as bigger anions are the main factors causing the decrease of CMC. According to the presented model, the influence of cations and anions is independent.

Graphical abstractDownload high-res image (177KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,