Article ID Journal Published Year Pages File Type
498593 Computer Methods in Applied Mechanics and Engineering 2011 16 Pages PDF
Abstract

In this paper the numerical computation of the dynamic response to turbulent wind excitations of slender structures is addressed. A numerical procedure capable to effectively estimate the three-dimensional structural behavior is proposed, based on a direct frequency domain approach. A probabilistic description of the wind velocity field, accounting for the correlation between the turbulence components, is combined to a linearized fluid–structure interaction model, under the quasi-steady hypothesis. We propose robust implementations of multiple right-hand side and multiple shift Krylov subspace methods with deflation of basis vectors, which allow us to efficiently analyze the dynamic response for a wide range of frequency values and wind time histories. Numerical experiments are reported with data stemming from real structure modeling.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,