Article ID Journal Published Year Pages File Type
498858 Computer Methods in Applied Mechanics and Engineering 2010 9 Pages PDF
Abstract

The hyperbolic heat transfer equation is a model used to replace the Fourier heat conduction for heat transfer of extremely short time duration or at very low temperature. Unlike the Fourier heat conduction, in which heat energy is transferred by diffusion, thermal energy is transferred as wave propagation at a finite speed in the hyperbolic heat transfer model. Therefore methods accurate for Fourier heat conduction may not be suitable for hyperbolic heat transfer. In this paper, we present two anti-diffusive methods, a second-order TVD-based scheme and a fifth-order WENO-based scheme, to solve the hyperbolic heat transfer equation and extend them to two-dimension, including a nonlinear application caused by temperature-dependent thermal conductivity. Several numerical examples are applied to validate the methods. The current solution is compared in one-dimension with the analytical one as well as the one obtained from a high-resolution TVD scheme. Numerical results indicate that the fifth-order anti-diffusive method is more accurate than the high-resolution TVD scheme and the second-order anti-diffusive method in solving the hyperbolic heat transfer equation.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,