Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
498917 | Computer Methods in Applied Mechanics and Engineering | 2010 | 20 Pages |
In this work we study the dispersion and dissipation characteristics of a higher-order finite volume method based on Moving Least Squares approximations (FV-MLS), and we analyze the influence of the kernel parameters on the properties of the scheme. Several numerical examples are included. The results clearly show a significant improvement of dispersion and dissipation properties of the numerical method if the third-order FV-MLS scheme is used compared with the second-order one. Moreover, with the explicit fourth-order Runge–Kutta scheme the dispersion error is lower than with the third-order Runge–Kutta scheme, whereas the dissipation error is similar for both time-integration schemes. It is also shown than a CFL number lower than 0.8 is required to avoid an unacceptable dispersion error.