Article ID Journal Published Year Pages File Type
498961 Computer Methods in Applied Mechanics and Engineering 2010 12 Pages PDF
Abstract

A high-order Galerkin Least-Squares (GLS) finite element discretization is combined with a Balancing Domain Decomposition by Constraints (BDDC) preconditioner and inexact local solvers to provide an efficient solution technique for large-scale, convection-dominated problems. The algorithm is applied to the linear system arising from the discretization of the two-dimensional advection–diffusion equation and Euler equations for compressible, inviscid flow. A Robin–Robin interface condition is extended to the Euler equations using entropy-symmetrized variables. The BDDC method maintains scalability for the high-order discretization of the diffusion-dominated flows, and achieves low iteration count in the advection-dominated regime. The BDDC method based on inexact local solvers with incomplete factorization and p = 1 coarse correction maintains the performance of the exact counterpart for the wide range of the Peclet numbers considered while at significantly reduced memory and computational costs.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,