Article ID Journal Published Year Pages File Type
498996 Computer Methods in Applied Mechanics and Engineering 2009 13 Pages PDF
Abstract

An asymptotic spectral stochastic approach is presented for computing the statistics of the equilibrium path in the post-bifurcation regime for structural systems with random material properties. The approach combines numerical implementation of Koiter’s asymptotic theory with a stochastic Galerkin scheme and collocation in stochastic space to quantify uncertainties in the parametric representation of the load–displacement relationship, specifically in the form of uncertain post-buckling slope, post-buckling curvature, and a family of stochastic displacement fields. Using the proposed method, post-buckling response statistics for two plane frames are obtained and shown to be in close agreement with those obtained from Monte Carlo simulation, provided a fine enough spectral representation is used to model the variability in the random dimension.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,