Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4990430 | Applied Thermal Engineering | 2017 | 29 Pages |
Abstract
In pharmaceutical freeze-drying, the position of the product container (vial) on the shelf of the equipment constitutes a major issue for the final product quality. Vials located at the shelf edges exhibit higher product temperature than vials located in the centre, which in turn often results in collapsed product. A physics-based model was developed to represent heat transfer phenomena and to study their variation with the distance from the periphery of the shelf. Radiation, conduction between solids, and conduction through low-pressure water vapour were considered. The modelling software package COMSOL Multiphysics was employed in representing these phenomena for a set of five vials located at the border of the shelf, close to the metallic guardrail. Model predictions of heat fluxes were validated against experimental measurements conducted over a broad range of shelf temperatures and chamber pressures representative for pharmaceutical freeze-drying. Conduction through low-pressure water vapour appeared as the dominant mechanism explaining the additional heat transfer to border vials compared to central ones. The developed model constitutes a powerful tool for studying heterogeneity in freeze-drying while reducing experimental costs.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
B. Scutellà , A. Plana-Fattori, S. Passot, E. Bourlès, F. Fonseca, D. Flick, I.C. Tréléa,