Article ID Journal Published Year Pages File Type
4990885 Applied Thermal Engineering 2018 10 Pages PDF
Abstract

•ASHP with water heater using compressor casing thermal storage is developed.•The total defrosting time and consumption were lower than those of RCD.•10 L hot water with a temperature of 30 °C was obtained during the normal heating for 2.5 h.•The compressor casing temperature was reduced by 4.6 °C.

In this study, the defrosting system of an air source heat pump utilizing compressor casing heat storage combined with a hot gas bypass cycle (ASHP-CCHS-HGBC) was designed. The phase change material for defrosting was selected, the phase change heat storage exchanger was devised, and the ASHP-CCHS-HGBC test system was established. The power consumption, defrosting time, and the influence of the indoor exchanger outlet on the air temperature in the ASHP-CCHS-HGBC method were then compared with those of the reverse-cycle defrosting (RCD) and electric heating defrosting (EHD) methods. Experimental results reveal that the total defrosting time and consumption of the ASHP-CCHS-HGBC method was 100 s and 43.6 kJ, respectively. These values were lower by 10 s (9%) and 12.1 kJ (21.7%) relative to those of RCD. Moreover, the compressor suction temperature was increased by 10.1 °C during defrosting by ASHP-CCHS-HGBC. Under the normal heating operation for 2.5 h, 10 L hot water with a temperature of 30 °C was obtained, the compressor casing temperature was reduced by 4.6 °C. While defrosting, the air temperature of the indoor heat exchanger outlet declined to only 3.3 °C and exerted the least influence on the indoor temperature among those of the three defrosting methods.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , ,