Article ID Journal Published Year Pages File Type
4991198 Applied Thermal Engineering 2017 17 Pages PDF
Abstract
To satisfy the flexible power demand of the low power dissipation devices in the independent space electric system, a micro-radial milliwatt-power radioisotope thermoelectric generator (RTG) was prepared and optimized in this research. The overall geometrical dimension of the RTG in the experiment was 65 mm (diameter) × 40 mm (height). The RTG, which was built and tested using simulated radioisotope source, eventually obtained an open-circuit voltage of 92.72 mV, an electric power of 149.0 μW, and an energy conversion efficiency of 0.015% at the ambient temperature of 293.15 K and heat source power from 0.1 W to 1 W. On the basis of the structure used in the experiment, the length and cross-sectional area of the thermoelectric leg and the number of thermoelectric modules were effectively optimized through the COMSOL Multiphysics. With the optimized length of 35 mm and cross-sectional area of 1.2 mm2, the RTG with four thermoelectric modules achieved a 15.8 mW output power under 1 W heat source power. The maximum conversion efficiency calculated using COMSOL code increased to 1.58%. According to the optimized electrical output, the micro-radial RTG is expected to be a reliable space power supply for micro components and could satisfy the low power requirements of space missions.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , , , ,