Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4992220 | Applied Thermal Engineering | 2016 | 55 Pages |
Abstract
A hybrid heating source using biomass-derived syngas is proposed to enable continuous operation of standalone solar thermal power generation plants. A novel, two-stage, low temperature combustion system is proposed that has the potential to provide stable combustion of syngas with near-zero NOx emissions. The hybrid heating system consists of a downdraft gasifier, a two-stage combustion system, and other auxiliaries. When integrated with a solar cycle, the entire system can be referred to as the integrated gasification solar combined cycle (IGSCC). The supercritical CO2 Brayton cycle (SCO2) is selected for the solar cycle due to its high efficiency. The thermodynamic performance evaluation of the individual unit and the combined system has been conducted from both energy and exergy considerations. The effect of parameters such as gasification temperature, biomass moisture content, equivalence ratio, and pressure ratio is studied. The efficiency of the IGSCC exhibited a non-monotonic behavior. A maximum thermal efficiency of 36.5% was achieved at an overall equivalence ratio of 0.22 and pressure ratio of 2.75 when the gasifier was operating at Tg = 1073 K with biomass containing 20% moisture. The efficiency increased to 40.8% when dry biomass was gasified at a temperature of 973 K. The exergy analysis revealed that the maximum exergy destruction occurred in the gasification system, followed by the combustion system, SCO2 cycle, and regenerator. The exergy analysis also showed that 8.72% of the total exergy is lost in the exhaust; however, this can be utilized for drying of the biomass.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Santanu Pramanik, R.V. Ravikrishna,