Article ID Journal Published Year Pages File Type
4992896 International Communications in Heat and Mass Transfer 2017 8 Pages PDF
Abstract
We consider the inverse problem of determining the time-dependent thermal conductivity and the transient temperature satisfying the heat equation with initial data, Dirichlet boundary conditions, and the heat flux as overdetermination condition. This formulation ensures that the inverse problem has a unique solution. However, the problem is still ill-posed since small errors in the input data cause large errors in the output solution. The finite difference method is employed as a direct solver for the inverse problem. The inverse problem is recast as a nonlinear least-squares minimization subject to physical positivity bound on the unknown thermal conductivity. Numerically, this is effectively solved using the lsqnonlin routine from the MATLAB toolbox. We investigate the accuracy and stability of results on a few test numerical examples.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,