Article ID Journal Published Year Pages File Type
4993029 International Communications in Heat and Mass Transfer 2017 8 Pages PDF
Abstract
Multi bubbles interaction and merger in a micro-channel flow boiling has been numerically studied. Effects of mass flux (56, 112, 200, and 335 kg/m2 ∗ s), wall heat flux (5, 10, and 15 kW/m2) and saturated temperature (300.15 and 303.15 K) are investigated. The coupled level set and volume of fluid (CLSVOF) method and non-equilibrium phase model are implemented to capture the two-phase interface, and the lateral merger process. It is found that the whole transition process can be divided to three sub-stages: sliding, merger, and post-merger. The evaporation rate is much higher in the first two stages due to the boundary layer effects in. Both the mass flux and heat flux affect bubble growth. Specifically, the bubble growth rate increase with the increase of heat flux, or the decrease of mass flux.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,