Article ID Journal Published Year Pages File Type
499327 Computer Methods in Applied Mechanics and Engineering 2009 15 Pages PDF
Abstract

A Timoshenko’s small-strain model for elastic rods with arbitrary geometry is analyzed using mixed finite element methods based on the Hellinger–Reissner principle. After presenting the mathematical model and commenting on some drawbacks of standard finite element approximations, a stabilized mixed formulation is derived by adding to the Galerkin formulation least squares residual of the equilibrium equations. Stability, uniform convergence and error estimates are proved and results of numerical experiments are presented illustrating the behavior of the finite element approximations, confirming the predicted rates of convergence and attesting the robustness of the stabilized mixed formulation.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,