Article ID Journal Published Year Pages File Type
499490 Computer Methods in Applied Mechanics and Engineering 2007 14 Pages PDF
Abstract

Back-propagation neural networks (BPN) have been extensively used as global approximation tools in the context of approximate optimization. A traditional BPN is normally trained by minimizing the absolute difference between target outputs and approximate outputs. When BPN is used as a meta-model for inequality constraint function, approximate optimal solutions are sometimes actually infeasible in a case where they are active at the constraint boundary. The paper explores the development of the efficient BPN based meta-model that enhances the constraint feasibility of approximate optimal solution. The BPN based meta-model is optimized via exterior penalty method to optimally determine interconnection weights between layers in the network. The proposed approach is verified through a simple mathematical function and a ten-bar planar truss problem. For constrained approximate optimization, design of rotor blade is conducted to support the proposed strategies.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,