Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4994917 | International Journal of Multiphase Flow | 2017 | 39 Pages |
Abstract
Spatiotemporal filter velocimetry (SFV) was extended to Lagrangian measurements with boundary-fitted measurement areas, and was applied to flows about single spherical drops of glycerol-water solution falling in stagnant silicon oil under clean and contaminated conditions to examine its applicability to the estimation of the Marangoni stress and surfactant concentration at a moving interface. Effects of bulk concentration of surfactant on the velocity field, the Marangoni stress and the surface concentration of surfactant were discussed from the measured data. As a result, we confirmed that accurate velocity distribution in the vicinity of the interface measured by SFV enables us to evaluate interfacial velocity and interfacial shear stresses and to estimate the Marangoni stress, interfacial tension and surfactant concentration at the interface with the assumption of negligible surface viscosity. The flow inside the drop and the interfacial velocity become weak due to the Marangoni stress caused by the gradient of surfactant concentration at the interface as the bulk concentration of surfactant increases. These results demonstrate that SFV is of great use in experimental analysis of adsorption and desorption kinetics at a moving interface.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Shigeo Hosokawa, Yuya Masukura, Kosuke Hayashi, Akio Tomiyama,