Article ID Journal Published Year Pages File Type
4994962 International Journal of Multiphase Flow 2017 56 Pages PDF
Abstract
A numerical study is presented for the effect of wall roughness on the deposition of solid spherical particles in a fully developed turbulent channel flow based on large eddy simulation combined with a Lagrangian particle-tracking scheme. The interest is focused on particles with response times in wall units in the range of 2.5 ≤ τp+ ≤ 600 depositing onto a vertical rough surface consisting of two-dimensional transverse square bars separated by a rectangular cavity. Predictions of particle deposition rates are obtained for several values of the cavity width to roughness element height ratio and particle response time. It is shown that the accumulation of particles in the near wall region and their preferential concentration in flow areas of low streamwise fluid velocity that occur in turbulent flows at flat channels are significantly affected by the roughness elements. Particle deposition onto the rough wall is considerably increased, exhibiting a subtle dependence on the particle inertia and the spacing between the bars. The observed augmentation of deposition coefficient can be attributed to the flow modifications induced by the roughness elements and to the inertial impaction of particles onto the frontal deposition area of the protruding square bars.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,