Article ID Journal Published Year Pages File Type
499842 Computer Methods in Applied Mechanics and Engineering 2006 20 Pages PDF
Abstract

A subgrid stabilization technique is developed for solving the two-dimensional incompressible Navier–Stokes equations at high Reynolds numbers. The time marching algorithm is based on a well-established fractional-step pressure-correction projection method. The advection–diffusion step is enriched by an implicit subgrid stabilizing term and by an explicit dissipative shock capturing term. The former is calculated by means of a hierarchical finite element setting, the latter is included to avoid Gibbs’ phenomenon in the boundary layer. Convergence tests on prototypical two-dimensional examples are reported and the method is used to simulate the viscous incompressible flows around the airfoil NACA0012 at zero incidence and Reynolds numbers ranging from 105 to 106.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,