Article ID Journal Published Year Pages File Type
4999783 Automatica 2017 13 Pages PDF
Abstract

This work deals with output regulation in multivariable hybrid systems featuring a continuous-time linear dynamics periodically affected by instantaneous changes of the state. More precisely, given a hybrid linear plant and a hybrid linear exogenous system, with periodic state jumps, the problem consists in finding a hybrid feedback regulator, with the same characteristics, achieving global asymptotic stability of the closed-loop dynamics and asymptotic tracking of the reference generated by the exogenous system for all the initial states. Starting from a general, necessary and sufficient condition for the existence of a solution, the discussion leads to a more specific, sufficient condition which outlines the computational framework for a straightforward synthesis of the compensator. The internal model principle is shown to hold in a more general formulation than the original one, adapted to the hybrid systems considered. A numerical example is worked out with the aim of illustrating how to implement the devised technique. The geometric approach is the key methodology in attaining these results.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,