Article ID Journal Published Year Pages File Type
4999815 Automatica 2017 10 Pages PDF
Abstract
In this paper, a decentralized output-feedback adaptive control scheme is proposed for a class of interconnected nonlinear systems with input quantization. Both logarithmic quantizers and improved hysteretic quantizers are studied, and a linear time-varying model is introduced to handle the difficulty caused by quantization. The proposed scheme allows the parameters of the quantizers to be freely changed during operation, and can guarantee global stability of the overall closed-loop system regardless of the coarseness of the quantizers and the existence of interactions among subsystems. Moreover, with the aid of a kind of high-gain K-filters, it is shown that all tracking errors converge to a residual set which can be made arbitrarily small by adjusting some design parameters. Simulation results are presented to illustrate the effectiveness of the proposed scheme.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,