Article ID Journal Published Year Pages File Type
4999848 Automatica 2017 8 Pages PDF
Abstract
The potential of reset controllers to improve the transient performance of linear (motion) systems has been extensively demonstrated in the literature. The design and stability analysis of these reset controllers generally rely on the availability of parametric models and on the numerical solution of linear matrix inequalities. Both these aspects may hamper the application of reset control in industrial settings. To remove these hurdles and stimulate broader application of reset control techniques in practice, we present new sufficient conditions, based on measured frequency response data of the system to be controlled, to guarantee the stability of closed-loop reset control systems. The effectiveness of these conditions is demonstrated through experiments on an industrial piezo-actuated motion system.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , , ,