Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4999989 | Automatica | 2017 | 6 Pages |
Abstract
The design of a controller for selective reduction of vibrations in flexible low-damped structures is presented. The objective of the active feedback control law is to increase damping of selected modes only, in frequency regions where a disturbance is likely to produce largest effect. Moreover, the stabilizing controller is required to be band-pass, in order to filter out high-frequency sensor noise and low-frequency accelerometer drift, and stable to increase robustness to uncertain parameters. The control design is based on the Inverse Optimal Design approach, through the solution of a matrix Stein equation, resulting in the solution of an optimal Hâ control problem. A grey-box identification approach of the authors is employed for obtaining the model from experimental data or from detailed Finite Element Model (FEM) simulators. The problem of optimal actuator/sensor location is also addressed. Detailed simulation results are provided to show the effectiveness of the strategy.
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Giacomo Canciello, Alberto Cavallo,