Article ID Journal Published Year Pages File Type
500063 Computer Methods in Applied Mechanics and Engineering 2007 8 Pages PDF
Abstract

Tissue engineering utilizes porous biomaterial scaffolds to deliver biological factors that accelerate tissue healing. These two functions require scaffolds be designed for mechanical loading and mass transport. The purpose of this paper was to apply both ad hoc and topology optimization homogenization based design approaches to create scaffold architectures, and to determine how these architectures compare to theoretical bounds on effective stiffness. Open cell scaffold architectures demonstrated a wide range of permeability, but were all below isotropic effective stiffness bounds. Wavy fiber architectures provide a means to approach the lower bounds. Using image-based techniques, designed architectures may be incorporated in anatomic shapes.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,