Article ID Journal Published Year Pages File Type
500108 Computer Methods in Applied Mechanics and Engineering 2006 18 Pages PDF
Abstract

We provide an overview of some of the interface-tracking and interface-capturing techniques we developed for finite element computation of flow problems with moving boundaries and interfaces. This category of flow problems includes fluid–particle, fluid–object and fluid–structure interactions; free-surface and two-fluid flows; and flows with moving mechanical components. Both classes of techniques are based on stabilized formulations. The interface-tracking techniques are based on the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation, where the mesh moves to track the interface. The interface-capturing techniques, developed primarily for free-surface and two-fluid interface flows, are formulated typically over non-moving meshes, using an advection equation in addition to the flow equations. The advection equation governs the evolution of an interface function that marks the location of the interface. We also highlight some of the methods we developed to increase the scope and accuracy of these two classes of techniques.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,