Article ID Journal Published Year Pages File Type
500156 Computer Methods in Applied Mechanics and Engineering 2006 16 Pages PDF
Abstract

We propose a methodology based on the boundary element method (BEM) to simulate pressure pulse–bubble interaction. The pulse resembles a shock wave and is in the form of a step pulse function incorporated into the Bernoulli equation. Compressibility effects of the water surrounding the bubble are neglected, and the dynamic response of the bubble to the impinging pulse is assumed to be mainly inertia controlled. The interaction induces the formation of a high-speed jet that penetrates the bubble. Results show that bubble shape, collapse time and jet velocity are in good agreement with other numerical models and experiments, and the method is more computationally efficient.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,