Article ID Journal Published Year Pages File Type
500346 Computer Methods in Applied Mechanics and Engineering 2005 29 Pages PDF
Abstract

Recently, we have developed multi-level boundary element methods (MLBEM) for the solution of the Laplace and Helmholtz equations that involve asymptotically decaying non-oscillatory and oscillatory singular kernels, respectively. The accuracy and efficiency of the fast boundary element methods for steady-state heat diffusion and acoustics problems have been investigated for square domains. The current work extends the MLBEM methodology to the solution of Stokes equation in more complex two-dimensional domains. The performance of the fast boundary element method for the Stokes flows is first investigated for a model problem in a unit square. Then, we consider an example problem possessing an analytical solution in a rectangular domain with 5:1 aspect ratio, and finally, we study the performance of the MLBEM algorithm in a C-shaped domain.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,