Article ID Journal Published Year Pages File Type
5004424 ISA Transactions 2015 18 Pages PDF
Abstract

This paper is concerned with the problems of stability analysis and stabilization with a state feedback controller through pole placement for a class of both continuous and discrete-time switched nonlinear systems. These systems are modeled by differential or difference equations. Then, a transformation under the arrow form is employed. Note that, the main contribution in this work is twofold: firstly, based on the construction of an appropriated common Lyapunov function, as well the use of the vector norms notion, the recourse to the Kotelyanski lemma, the M−matrix proprieties, the aggregation techniques and the application of the Borne-Gentina criterion, new sufficient stability conditions under arbitrary switching for the autonomous system are deduced. Secondly, this result is extended for designing a state feedback controller by using pole assignment control, which guarantee that the corresponding closed-loop system is globally asymptotically stable under arbitrary switching.The main novelties features of these obtained results are the explicitness and the simplicity in their application. Moreover, they allow us to avoid the search of a common Lyapunov function which is a difficult matter. Finally, as validation to stabilize a shunt DC motor under variable mechanical loads is performed to demonstrate the effectiveness of the proposed results.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,