Article ID Journal Published Year Pages File Type
500452 Computer Methods in Applied Mechanics and Engineering 2017 17 Pages PDF
Abstract

In this paper, an upwind local radial basis function-based differential quadrature (RBF-DQ) scheme is presented for simulation of inviscid compressible flows with shock wave. RBF-DQ is a naturally mesh-free method. The scheme consists of two parts. The first part is to use the local RBF-DQ method to discretize the Euler equation in conservative, differential form on a set of scattered nodes. The second part is to apply the upwind method to evaluate the flux at the mid-point between the reference knot and its supporting knots. The proposed scheme is validated by its application to simulate the supersonic flow in a symmetric, convergent channel and the shock tube problem. The obtained numerical results agree very well with the theoretical data.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,