Article ID Journal Published Year Pages File Type
500454 Computer Methods in Applied Mechanics and Engineering 2005 15 Pages PDF
Abstract

The numerical modeling of the coupled heat and mass transfer processes prevalent in drying non-hygroscopic and hygroscopic capillary particulate materials is dealt with. A set of volume averaged governing equations is employed for this purpose. An improved unstructured hybrid vertex-centered edge-based finite volume algorithm is used for spatial discretization purposes. Enhancements include reformulation of boundary integral flux-averaging in conjunction with the use of a compact stencil in the computation of diffusive terms. A significant increase in accuracy is demonstrated. For validation purposes the drying of a non-hygroscopic brick and hygroscopic extruded corn meal are modeled. Predicted results for the former case are shown to compare reasonable well with experimental data while for the latter case a very good agreement is obtained.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,