Article ID Journal Published Year Pages File Type
500716 Computer Methods in Applied Mechanics and Engineering 2005 26 Pages PDF
Abstract

A simple displacement-based 3-node, 18-degree-of-freedom flat triangular plate/shell element LDT18 is proposed in this paper for linear and geometrically nonlinear finite element analysis of thin and thick laminated composite plates. The presented element is based on the first-order shear deformation theory (FSDT), and the total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from the Timoshenko’s laminated composite beam functions, hence convergence to the thin plate solution can be achieved theoretically and shear-locking problem is avoided naturally. The plane displacement interpolation functions of the Airman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. Numerical examples demonstrate that the present element is accurate and efficient for linear and geometrically nonlinear analysis of thin to moderately thick laminated composite plates.

Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,