| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 500810 | Computer Methods in Applied Mechanics and Engineering | 2005 | 20 Pages |
This paper presents an elasto-plastic damage model that is based on irreversible thermodynamics and internal state variable formalism for the analysis of multi-layered composites. The model is based on a damage surface that is defined in terms of an internal damage variable of energy, along with a set of rate-independent elasto-plastic constitutive equations defined in an effective stress–strain space. Employing the operator splitting methodology, a three-step predictor/multi-corrector algorithm is developed that includes an elastic predictor, a plastic corrector, and a damage corrector. The constitutive model is cast in a co-rotational kinematic framework for damage analysis in laminated plates and shells undergoing large deflections. Numerical examples are presented to demonstrate the accuracy and range of applicability of the proposed model.
