Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5008828 | Sensors and Actuators B: Chemical | 2017 | 19 Pages |
Abstract
A facile, scalable and low-cost strategy for fabricating hydrogen sensors with few-layered Pd-functionalized MoS2 according to a simple solution process is reported. The sensors were prepared by drop-casting a MoS2-containing solution onto a SiO2 substrate and functionalizing the surface of the MoS2 with Pd using evaporation. Patterned deposition of Cr/Au on top of the MoS2-coated SiO2 substrate was then performed using evaporation through a shadow mask to place the micro electrodes on the substrate. The fabricated Pd-MoS2 sensors successfully detected hydrogen gas diluted by air at room temperature. With exposure to hydrogen gas, the Pd was converted to palladium hydride, which has a lower work function than MoS2, resulting in the transfer of electrons from palladium hydride to MoS2, thereby decreasing the resistance of the sensor. The functionalized MoS2 showed a 35.3% resistance change when exposed to a 1% hydrogen-containing gas, while the pristine MoS2 showed no reaction. The lower limit of detection of the resulting functionalized MoS2 sensor was 50Â ppm.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Dae-Hyun Baek, Jongbaeg Kim,