Article ID Journal Published Year Pages File Type
5009900 Sensors and Actuators B: Chemical 2017 41 Pages PDF
Abstract
Metal oxide semiconductor (MOS) based gas sensors for triethylamine (TEA) are anticipated with low operating temperature, high response, and robust manufacturing process. TEA sensors with the α-Fe2O3@NiO or α-Fe2O3@CuO core-shell nanorods (NRs) heterostructure are successfully fabricated and their sensing performance is optimized by controlling the shell thickness based on Debye length. Porous α-Fe2O3 NRs are directly prepared on flat Al2O3 substrates by convenient hydrothermal process. The p-type shell layer is deposited by pulsed laser deposition (PLD) method, which width is controlled by changing the applied laser pulses. Due to the formation of PN heterojunction, the core-shell NR heterostructures show enhanced performances than pristine α-Fe2O3 NRs at near room-temperature, e.g. 40 °C. Moreover, such heterostructural sensor performances also exhibit a strong dependence on the shell thickness. When the p-type shell thickness is close to its Debye length (λd), the core-shell sensor of the highest response is realized. The enhanced sensing properties of this core-shell NR heterostructure toward TEA can be explained by the increase of initial resistance (Ra) due to the modulation of depletion layer through optimizing the p-type shell thickness.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,