Article ID Journal Published Year Pages File Type
5010138 Sensors and Actuators B: Chemical 2017 36 Pages PDF
Abstract
In this work, highly photoluminescent glycine (GLY) functionalized graphene quantum dots (GQDs) (GLY-GQDs) were synthesized by a simple and green pyrolysis method employing ethylene glycol as carbon source, GLY as functional molecule. The as-synthesized GLY-GQDs exhibited excellent water solubility with a fluorescence quantum yield of 21.7%. The fluorescence of GLY-GQDs was intensively quenched by Ce4+ via forming non luminescent complexes of GLY-GQDs-Ce4+. When ascorbic acid (AA) was in presence, Ce4+ was reduced to Ce3+ and the fluorescence of GLY-GQDs regained. In the light of this theory, a simple AA sensor was fabricated without complicated, costly and time-consuming operations. Under the optimal conditions, the fluorescence recovery ratio and the concentration of AA has a linear relationship in the range of 0.03-17.0 μM and with a detection limit of 25 nM which was one order higher sensitive than the reported methods Furthermore, this established sensor system also shows a high selectivity toward AA over a wide range of common biological molecules such as uric acid, dopamine and glutathione and so on. The proposed method was successfully applied for the AA detection in serum samples. All these suggested the potential of this GLY-GQDs based sensor in the clinical analysis.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , ,