Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5010505 | Systems & Control Letters | 2017 | 8 Pages |
Abstract
This paper is concerned with optimal control problems for parabolic partial differential equations with pointwise in time switching constraints on the control. A standard approach to treat constraints in nonlinear optimization is penalization, in particular using L1-type norms. Applying this approach to the switching constraint leads to a nonsmooth and nonconvex infinite-dimensional minimization problem which is challenging both analytically and numerically. Adding H1 regularization or restricting to a finite-dimensional control space allows showing existence of optimal controls. First-order necessary optimality conditions are then derived using tools of nonsmooth analysis. Their solution can be computed using a combination of Moreau-Yosida regularization and a semismooth Newton method. Numerical examples illustrate the properties of this approach.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Christian Clason, Armin Rund, Karl Kunisch,