Article ID Journal Published Year Pages File Type
5010654 Systems & Control Letters 2016 9 Pages PDF
Abstract
In this paper, we consider boundary stabilization for a cascade of Schrödinger equation-ODE system with both, matched and unmatched disturbances. The backstepping method is first applied to transform the system into an equivalent target system where the target system is input-to-state stable. To reject the matched disturbance, the sliding mode control (SMC) law is designed for the target system. The well-posedness of the closed-loop system is proved, and the reachability of the sliding manifold in finite time is justified by infinite-dimensional system theory. It is shown that the resulting closed-loop system is input-to-state stable. A Numerical example illustrates the efficiency of the sliding mode design that reduces the ultimate bound of the closed-loop system by rejecting the matched disturbance.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,