Article ID Journal Published Year Pages File Type
5022637 International Journal of Engineering Science 2017 12 Pages PDF
Abstract
The forced nonlinear size-dependent vibrations and bending of axially functionally graded (AFG) tapered microbeams are examined incorporating extensibility. Employing the modified version of the couple stress-based theory, the nonlinear partial differential equations for the transverse and longitudinal motions for a clamped-clamped AFG tapered microbeam are obtained via Hamilton's principle. The variation of the mechanical properties and the cross-section of the AFG microbeam along the length are included in the equations of motion based on exponential distributions of the moduli of elasticity, mass density, Poisson's ratio, and cross-sectional area. The Galerkin method is utilised to obtain a set of discretised nonlinear differential equations of ordinary type; this set of equation is solved with the help of Houbolt's finite difference technique together with the Newton-Raphson method. The effects of the small-scale parameter, the gradient index, material properties variation, and the taper ratio on the nonlinear vibrations of the microsystem are investigated.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,