Article ID Journal Published Year Pages File Type
5024425 Nonlinear Analysis: Real World Applications 2017 24 Pages PDF
Abstract
In this paper, we investigate the periodic homogenization of nonlinear parabolic equation arising from heat exchange in composite material problems. This problem, defined in periodical domain, is nonlinear at the interface. This nonlinearity models the heat radiation on the interface, which constitutes the transmission boundary conditions, between the two components of the material. The main challenge is, first, to show the well-posedness of the microscopic problem using the topological degree of Leray-Schauder tools. Then, we apply the two scale convergence to identify the equivalent macroscopic model using homogenization techniques. Finally, in order to confirm the efficiency of the homogenization process, we present some numerical results obtained via finite element approximation.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , ,